Video: Room temperature phosphorescence, NPB

In my last post, I highlighted our most recent publication in Scientific Reports, which discusses novel strategies to achieve room temperature phosphorescence of organic semiconductors by means of sample engineering and exciton management (see: ‘Room temperature triplet state spectroscopy of organic semiconductors‘). In today’s post, I’d like to give some very convincing evidence, how well these approaches work out in real time and space.

In the video below, you see a couple of glass slides that are covered with a thin film composed of the polymer PMMA [Poly(methyl 2-methylpropenoate)], into which 2 wt% of the well known organic material NPB [N,N′-di(naphtha-1-yl)-N,N′-diphenyl-benzidine] is embedded. The sample is optically excited with a 365 nm LED, giving rise to blue fluorescence of NPB. Whenever the LED is turned off, the sample shows a persistent emission of green/yellow color, which is the phosphorescence of NPB. Conditions: room temperature, nitrogen atmosphere.