SPIE Photonics Europe 2018: Join us at a new Conference EPE117

At the upcoming SPIE Photonics Europe 2018 (April 22-26, 2018) in Strasbourg, France, my colleague Koen Vandewal and I organize a new Conference called Organic Electronics and Photonics: Fundamentals and Devices (EPE117). The Call for Papers reads:

Organic materials are interesting for a myriad of photonic and optoelectronic applications due to their tunability of key electronic and optical properties, their versatility of processing, the softness of the solid films formed, and their potential to allow for non-toxic materials. Currently monochrome organic light-emitting diodes are a commercial product used in displays, while organic photovoltaics and sensors for low cost, bio, artificial skin, or wearable applications have seen rapid development in de latest years. On the basis of this very versatile material platform, it is expected that many more, innovative application concepts will be discovered and developed.

Hereby does fundamental research on organic electronics and photonics form the backbone for the discovery of new applications, especially, when materials’ properties are evaluated free of pre-determined applications. Moreover, basic experimental and theoretical research on charge, energy and spin transfer processes, organic-organic interfaces and their electronic structure, will provide structure-property relations and progress existing applications.

The focus of this conference will be on the following topics:

  • optoelectronic organic devices including light-emitting diodes, solar cells, photodetectors, sensors, transistors and switches
  • organic optical systems: waveguides, energy converters, cavities, light directors
  • organic bioelectronics with focus on optics
  • basic research in organic electronics and photonics: spectroscopy, charge generation, transport and recombination, spin,
  • charge and electron transfer interfaces, theoretical calculations and modelling, structure-property relations.

The deadline for abstract submission is October 23, 2017, so a couple of weeks to go.

We encourage you all to submit an abstract and join us for an exciting and inspiring week of fruitful scientific exchange.


International TADF Symposium in Frankfurt is upcoming

On Thursday, September 7, 2017, the International TADF Symposium (organized by cynora GmbH) will take place in Frankfurt. It will be a packed one-day event with a tight focus on OLEDs based on thermally activated delayed fluorescence (TADF). The event will bring together leading industry and academia to share new results and discuss upcoming developments. You can find all the details about speakers and program on the events webpage. It is definitely a very good opportunity to get in touch with the people working on this exciting material development.

New paper: Interplay of Fluorescence and Phosphorescence in Organic Biluminescent Emitters

In our recent publication entitled ‘Interplay of Fluorescence and Phosphorescence in Organic Biluminescent Emitters‘ published in the Journal of Physical Chemistry C, we discuss how the population of triplet excitons in emitters which sport efficient phosphorescence at room temperature influence the overall luminescence properties. An important emphasis here is on the exciton dynamics of the fast fluorescence (nanoseconds) and the slow phosphorescence (milliseconds), which span over six orders of magnitude in excited state lifetimes, depending on the respective sample composition. All of these results are obtained at room temperature.

We acknowledge the funding from the German excellence cluster cfaed (TU Dresden) and from European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 679213).

TADF paper featured in Advanced Science News

Our recent paper together with our colleagues at the Leibniz Institute of Polymer Research Dresden (IPF), is featured in Advanced Science News. This work discusses a novel way to achieve thermally activated delayed fluorescence in polymers through an extension of the HOMO conjugation, which ultimately leads to a smaller splitting between singlet and triplet excited charge transfer states. The paper can be found here: Conjugation-Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non-TADF Units to TADF-Active Polymers.

DPG Frühjahrstagung Dresden 2017 starts tomorrow

The DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) will take place from March 19 – 24 in Dresden this year. Below, you find a list of our group’s contributions throughout the week. We are looking forward to an exciting and fruitful week of discussions and exchange. See you there. (There is even a hashtag for the event: #DPGDD17)

Mo, 11:00 CPP 7.1 Two-color warm white hybrid OLEDs from thermally activated delayed fluorescence — Ludwig Popp, Paul Kleine, Reinhard Scholz, Ramunas Lygaitis, Olaf Zeika, Axel Fischer, Simone Lenk, and Sebastian Reineke
Mo, 11:15 CPP 7.2 Conjugation induced thermally activated delayed fluorescence — Paul Kleine, Qiang Wei, Yevhen Karpov, Xianping Qiu, Hartmut Komber, Karin Sahre, Anton Kiriy, Ramunas Lygaitis, Simone Lenk, Brigitte Voit, and Sebastian Reineke
Mo, 12:15 CPP 7.6 Ultrathin metal electrode for bottom-emitting OLEDs on buckled substrates — Yungui Li, Toni Bärschneider, Paul-Anton Will, Yuan Liu, Simone Lenk, and Sebastian Reineke
Di, 15:45 CPP 26.8 Absolute optical sensor based on biluminescence — Caterin Salas Redondo and Sebastian Reineke
Mi, 18:30 CPP 50.13 controlling excitons in exciplex host systems for efficient white OLEDs — Yuan Liu, Simone Lenk, Karl Leo, and Sebastian Reineke
Mi, 18:30 CPP 50.19 Synthesis and characterisation of the new emitters for OLED applications — Ramunas Lygaitis, Olaf Zeika, Reinhard Scholz, Ludwig Popp, Paul Kleine, Simone Lenk, and Sebastian Reineke
Mi, 13:00 DS 29.14 Influence of radiative efficiency and dipole orientation on optimal layer thicknesses of monochrome OLEDs for maximum EQE — Paul-Anton Will, Cornelius Fuchs, Reinhard Scholz, Simone Lenk, and Sebastian Reineke
Mi, 15:15 DS 34.2 Determination of the molecular orientation in absorptive organic thin films — Christian Hänisch, Simone Lenk, and Sebastian Reineke
Mi, 09:30 HL 52.1 Full Range Electrothermal Modeling of Organic Light-emitting Diodes — Axel Fischer, Koen Vandewal, Simone Lenk, and Sebastian Reineke
Mi, 15:00 HL 64.19 Diffuse Transmission and Reflection of Light Scattering Polymer Substrates for Organic Light-emitting Diodes — Pen Yiao Ang, Georg Marks, Abdalla Mahmoud, Axel Fischer, Simone Lenk, and Sebastian Reineke

Ryutaro Komatsu (see below) is currently visiting our group as part of an ongoing exchange program between TU Dresden and Universities from Japan. He is a PhD candidate of Prof. Junji Kido from Yamagata University – good chance to see some of their recent work.

Mi, 18:30 CPP 50.14 Efficient Deep-blue Pyridimidine-based TADF Emitters Using a Highly Twisted Molecular Skeleton — •Ryutaro Komatsu, Tatsuya Ohsawa, Hisahiro Sasabe, Kohei Nakao, Yuya Hayasaka, and Junji Kido


ECME 2017 in Dresden

This year, the 14th European Conference on Molecular Electronics (ECME) will be
held in Dresden on August 29 – September 2, 2017. Important date to remember and of course consider is the deadline for the Call for Papers, which is March 31, 2017. Please check it out to learn more about the different topics the conference will cover. The event already has  a broad and exciting collection of invited speakers and now it is looking for your contribution to turn it into a great and vivid week of molecular electronics science.

New paper: Conjugation-Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non-TADF Units to TADF-Active Polymers

In a recent collaboration with our colleagues at the Leibniz Institute of Polymer Research Dresden (IPF), we have developed polymers that show thermally activated delayed fluorescence (TADF) properties with high efficiency. This work has now been published in Advanced Functional Materials under the title: Conjugation-Induced Thermally Activated Delayed Fluorescence (TADF): From Conventional Non-TADF Units to TADF-Active Polymers. Interestingly, the monomer building block does not show TADF but rather only phosphorescence. Hence, the TADF property is induced as a consequence of increased conjugation during polymer formation. Ultimately, the singlet-triplet splitting is reduced in the polymer to allow for TADF. The emitter shows sky-blue emission with roughly 70% PLQY. This report includes the synthesis of the monomer and polymer materials, quantum chemical calculations and a detailed photo-physical characterization.