Deadline for SPIE Europe 2018 – TODAY / Conference EPE117 is awaiting your submission

Today is the submission deadline for the upcoming SPIE Photonics Europe 2018 (April 22-26, 2018) in Strasbourg, France. So please go forward and submit your abstract to the new Conference Organic Electronics and Photonics: Fundamentals and Devices (EPE117).

We are inviting everyone working in the field of organic electronics and photonics to consider our Conference and to submit an abstract. We are looking forward to a broad, state-of-the-art exchange of research and development trends.

Advertisements

SPIE Europe 2018 /Only 3 days left for abstact submission

The abstract submission deadline for the upcoming SPIE Photonics Europe 2018 (April 22-26, 2018) in Strasbourg, France, is closing in: October 23, 2017, so only 3 days to go!

My colleague Koen Vandewal and I organize the new Conference Organic Electronics and Photonics: Fundamentals and Devices (EPE117).

We are inviting everyone working in the field of organic electronics and photonics to consider our Conference and to submit an abstract. We are looking forward to a broad, state-of-the-art exchange of research and development trends.

Please do also spread the word, if you know colleagues of yours, who might be interested to go.

ECME 2017 in Dresden

This year, the 14th European Conference on Molecular Electronics (ECME) will be
held in Dresden on August 29 – September 2, 2017. Important date to remember and of course consider is the deadline for the Call for Papers, which is March 31, 2017. Please check it out to learn more about the different topics the conference will cover. The event already has  a broad and exciting collection of invited speakers and now it is looking for your contribution to turn it into a great and vivid week of molecular electronics science.

New paper: Seeing triplets of organic materials – at room temperature

In the world of organic electronics, many devices and applications make use of the excitonic properties of organic semiconductors, namely light-emitting diodes, solar cells, photo-detectors, lasers, sensors, luminescent solar concentrators, optical up- and down-converters, and more. Excitons in organic molecules are highly localized states, giving rise to singlet and triplet excitons that differ in almost every aspect. Triplets are ‘dark’ states, who’s transition to the ground state is quantum mechanically forbidden, therefore, they are long-lived states, in crystals they can diffuse like crazy, and are typically significantly lower in energy than the molecule’s singlet state, as a consequence of exchange interactions. Still, if incorporated in the right way, one can specifically make use of triplets, e.g. through singlet exciton fission, thermally activated delayed fluorescence, or spin-orbit coupling.

Without any doubt, it is essential to know the triplet state energy of a given organic molecule to be able to design excitonic devices. Given the vast of organic molecules known and possible to design, the task of experimentally determining the triplet state is time consuming and can get very frustrating. This is because the ‘dark’ triplet generally only unmasks it’s properties at cryogenic (< 77 K, often at ~ 10 K) temperatures, where non-radiative modes are frozen out. This task would be simplified to great extend, if spectroscopy could be carried out at room temperature.

In our new paper published in Scientific Reports today, ‘Room temperature triplet state spectroscopy of organic semiconductors‘, we report on our recent efforts to simplify the determination of triplet states through sample engineering that allows to carry out these experiments at room temperature. Key trick to unlock room temperature phosphorescence from random organic materials is the engineering of a rigid matrix-enviroment that suppresses many non-radiative modes, very similar to the cooling of the sample. We test this on a variety of materials well known in the field of organic electronics. This scheme is very effective and powerful. Beyond simple spectroscopy of triplet states, it also allowed the observation of biluminescence, i.e. efficient, simultaneous fluorescence and phosphorescence of organic molecules.